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Abstract 

Background:  Accurate prognosis assessment is essential for surgically resected intrahepatic cholangiocarcinoma 
(ICC) while published prognostic tools are limited by modest performance. We therefore aimed to establish a novel 
model to predict survival in resected ICC based on readily-available clinical parameters using machine learning 
technique.

Methods:  A gradient boosting machine (GBM) was trained and validated to predict the likelihood of cancer-specific 
survival (CSS) on data from a Chinese hospital-based database using nested cross-validation, and then tested on the 
Surveillance, Epidemiology, and End Results (SEER) database. The performance of GBM model was compared with 
that of proposed prognostic score and staging system.

Results:  A total of 1050 ICC patients (401 from China and 649 from SEER) treated with resection were included. Seven 
covariates were identified and entered into the GBM model: age, tumor size, tumor number, vascular invasion, num‑
ber of regional lymph node metastasis, histological grade, and type of surgery. The GBM model predicted CSS with 
C-Statistics ≥ 0.72 and outperformed proposed prognostic score or system across study cohorts, even in sub-cohort 
with missing data. Calibration plots of predicted probabilities against observed survival rates indicated excellent con‑
cordance. Decision curve analysis demonstrated that the model had high clinical utility. The GBM model was able to 
stratify 5-year CSS ranging from over 54% in low-risk subset to 0% in high-risk subset.

Conclusions:  We trained and validated a GBM model that allows a more accurate estimation of patient survival after 
resection compared with other prognostic indices. Such a model is readily integrated into a decision-support elec‑
tronic health record system, and may improve therapeutic strategies for patients with resected ICC.
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Background
Intrahepatic cholangiocarcinoma (ICC) ranks as the 
second most common primary liver cancer after hepa-
tocellular carcinoma. The increasing incidence and 
accompanying rising mortality rates of ICC over the 
past few decades worldwide have become a significant 
healthcare problem [1]. Although surgery offers the best 
chance of a potential cure for patients with localized 
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and resectable ICC, the prognosis following resection 
remains discouraging, with 5-year survival of 25–35%, 
and mortality largely attributes to tumor recurrence, with 
50–70% of patients experiencing tumor recurrence [2–4]. 
Thus, accurate prognosis assessment is essential to help 
direct appropriate individualized treatment for surgically 
resected ICC and thereafter optimize outcomes.

The American Joint Committee on Cancer (AJCC) 
staging manual represents the most widely used system 
for surgically managed patients with ICC. Although con-
stantly refined, the AJCC staging system exhibits modest 
prognostic accuracy for resected cases and the progno-
sis of patients with the same stage varies [2, 5]. By using 
data from institutional series, multiple prognostic nom-
ograms have been established to predict survival after 
resection for ICC [2, 6]. Recently, Raoof et al. [7] devel-
oped a prognostic score for ICC based on the independ-
ent association of multifocality, extrahepatic extension, 
grade, nodal status, and age (MEGNA) with survival 
using cases derived from a population-based database. 
All these published models were developed on factors 
known after surgery because several determinants, such 
as tumor grade and nodal status, can be ascertained only 
in the postoperative context. However, all these models 
are outmoded and rigid tools by nature because all vari-
ables were examined by Cox proportional hazard regres-
sion and assigned fixed weights, and missing data are not 
allowed. Hence, new methods to improve survival esti-
mation and goal-concordant cancer care are warranted.

Today, machine learning (ML) algorithms enable com-
puters to learn from large-scale, heterogeneous health-
care data without predefined rules. ML models have 
offered considerable advantages over traditional statis-
tical models for many tasks, such as diagnosis and clas-
sification, risk stratification, and survival prediction [8]. 
Unfortunately, many popular ML algorithms are essen-
tially black boxes that limit the physician’s trust in their 
results. Gradient boosting machine (GBM) is currently 
considered as the state-of-the-art algorithm for predic-
tion with tabular data and has been consistently utilized 
as the top performer of modelling competitions in a vari-
ety of clinical scenarios [9–11]. GBM algorithm can be 
disassembled into simple decision-tree-base-learners, 
which provide model-centric explanations, and handle 
missing values with the gradient-boosting predictor. To 
date, there has been no effort to use GBM to take full 
advantage of readily-available clinical information to help 
physicians predict survival of patients with resected ICC. 
Accordingly, we assembled a large-scale international 
cohort of ICC patients to design and evaluate a GBM 
model for prognosis prediction. We hypothesized that 
this model would outperform routinely used or previ-
ously established prognostic indices in ICC.

Methods
Patient population and study design
Adult patients (age ≥ 20 years) with histology-confirmed 
ICC who underwent liver resection were retrospectively 
identified from two sources: (1) consecutive patients 
treated between 2009 and 2019 at the First Affiliated 
Hospital of Nanjing Medical University (FAHNJMU) 
(Nanjing, China); (2) patients (histology codes 8140 and 
8160 for adenocarcinoma and cholangiocarcinoma in 
combination with site code C22.1 for intrahepatic bile 
duct, according to International Classification of Dis-
eases for Oncology, 3rd Edition) [12] between 2004 and 
2015 in the Surveillance, Epidemiology, and End Results 
(SEER) database. The exclusion criteria were: (1) loss to 
follow-up or a survival of < 1  month; (2) missing infor-
mation on the type of resection; (3) another malignant 
primary tumor prior to ICC diagnosis; (4) cause of death 
unknown; (5) exact tumor size unknown; (6) incomplete 
information on tumor extension or metastasis for 8th 
AJCC staging; (7) distant metastatic disease.

The GBM model was trained and validated on data 
from FAHNJMU using nested cross-validation, and then 
tested on the SEER database (Fig. 1A). Because the model 
was developed on the dataset of Asian patients, use of 
the geographically distinct population from SEER should 
provide an appropriate assessment for its generalization 
ability. This study followed the Transparent Reporting of 
a Multivariable Prediction Model for Individual Progno-
sis or Diagnosis guideline [13]. This study was approved 
by the ethics committee of FAHNJMU (Nanjing, China) 
and the requirement of informed patient consent was 
waived.

Data collection and outcome
The pertinent demographic and clinicopathological data 
were abstracted based on a standardized template. Data 
collection included the following characteristics of inter-
est: age, gender, tumor size, tumor number, vascular inva-
sion, regional lymph node metastasis (LNM), number of 
regional LNM, histological grade, visceral peritoneum 
invasion, adjacent organ invasion, liver fibrosis score, 
and type of surgery. The above-mentioned covariates are 
readily retrieved from electronic medical records and 
routine clinical practice. Patients in the FAHNJMU data-
base were monitored after surgery with laboratory and 
imaging studies, including liver function, serum tumor 
markers, ultrasonography, dynamic computed tomogra-
phy or magnetic resonance imaging, every 3 months dur-
ing the first 2  years and every 6  months thereafter; the 
follow-up was terminated on August 20, 2020. Survival 
data for the SEER database were estimated using statis-
tics from the US Census Bureau [14]. The primary out-
come of this study was cancer-specific survival (CSS), 
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defined as the duration from the date of surgery to the 
date of death from ICC. All deaths from any other cause 
were counted as non-cancer-specific and censored at the 
date of the last follow-up.

Model training, validating and testing
A GBM model that aggregated multiple predictors 
was trained to predict the likelihood of survival with 
decision-tree-base-learners using the “gbm” R pack-
age. Each base learner may consist of different predic-
tors; predictors with higher importance are utilized 
in more decision trees as well as earlier in the boost-
ing algorithm. Hyperparameters were tuned with a 

grid search approach in a 3 × fivefold nested, cross-
validated, manner (3 outer iterations and 5 inner 
iterations) on the training/validation cohort using the 
“mlr” R package. Nested cross-validation was applied 
because it more accurately estimates the independ-
ent validation error of the given algorithm on unseen 
datasets by averaging its performance metrics across 
folds [15]. Study pipeline is schematically depicted 
in Fig.  1B. The GBM model was then tested on the 
patients of the test cohort to determine whether it 
remains accurate when new data are fed into it. We 
also compared the performance of GBM model to 
that of AJCC staging system and previously published 
MEGNA model.

Fig. 1  Study flowchart and methodology. A Flow chart of the study population. B Pipeline to train, validate and test the gradient boosting 
machine. ICC, Intrahepatic cholangiocarcinoma; FAHNJMU, First Affiliated Hospital of Nanjing Medical University; SEER, Surveillance, Epidemiology, 
and End Results; AJCC, American Joint Committee on Cancer
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Statistical analysis
All statistical analyses were performed using R software 
version 3.4.4 (www.r-​proje​ct.​org). Categorical variables 
were presented as number (percentage) and compared 
using χ2 test. Continuous variables were reported as 
median (interquartile range) and compared using Mann–
Whitney U test or Kruskal–Wallis rank test, as appropri-
ate. Survival probabilities and 95% confidence intervals 
(CI) were estimated using the Kaplan–Meier method 
and compared by the log-rank test. Model performance 
was measured by Harrell’s C-statistic and 95% CIs were 
calculated by bootstrapping. Model calibration was per-
formed by plotting the predicted probabilities versus 
the observed outcomes. Clinical utility was determined 
by decision curve analysis that quantifies the net ben-
efit associated with the adoption of the model [16]. By 
using X-tile software [17], the optimal cut-points of GBM 
predictions were determined to stratify patients at low, 
intermediate, or high risk for cancer-specific death. A 
two-sided P < 0.05 was considered statistically significant.

Results
Patient data
A total of 1050 patients (401 from the FAHNJMU data-
base and 649 from the SEER database; 559 men [53.2%] 
and 491 women [46.8%]; median [interquartile range] 
age, 62.0 [53.0–69.0] years) who met the study criteria 
formed the original dataset. During a median follow-up 
of 36.2  months (range, 1.0–165.0  months), 591 cancer-
specific deaths (56.3%) occurred; the 2-and 5-year CSS 
rates were 63.1% and 35.6%, respectively. Comparisons 
of training/validation (n = 401) and test (n = 649) cohorts 
are shown in Table 1.

GBM prognostic model
Based on the training/validation cohort, we explored 12 
potential model covariates using GBM algorithm and 
nested cross-validation. We utilized 2000 decision trees 
sequentially, with at least 5 observations in each termi-
nal node; the decision tree depth was optimized at 2, 
corresponding to 2-way interactions, and the shrink-
age parameter was optimized at 0.01. Covariates with a 
relative influence greater than 6 (age, tumor size, tumor 
number, vascular invasion, number of regional LNM, 
histological grade, and type of surgery) were integrated 
into the GBM model developed to predict CSS (Fig. 2A-
B). The most important feature in the GBM model 
was tumor size, followed by patient age and number of 
regional LNM. No difference was observed with regard 
to GBM prediction scores between training/validation 
and test cohorts (P = 0.499) (Fig. S1).

Model performance
For predicting post-resection survival specific for ICC, 
the GBM model had a C-statistic of 0.751 (95% CI 
0.717–0.784) in the training/validation cohort, signifi-
cantly better than that achieved using 8th edition AJCC 
criteria as well as MEGNA prognostic score (P < 0.001) 
(Table  2). The internal validation group was the nested 
cross-validation of the GBM model of the training cohort 
with approximately 134 patients in each outer loop itera-
tion; GBM model yielded a median C-statistic of 0.756 
(range 0.707–0.796) for the composite outcome and 
outperformed AJCC system (median C-statistic 0.679, 
range 0.648–0.693, P < 0.05) as well as MEGNA score 
(median C-statistic 0.660, range 0.656–0.710, P < 0.05) 
(Fig. 2C). In the test cohort, the GBM model also offered 
improved prognostic discrimination (C-statistic, 0.723; 
95% CI 0.697–0.749) compared with the AJCC stag-
ing system and MEGNA prognostic score (P < 0.001) 
(Table 2). The superior performance of GBM model was 
further confirmed in sub-cohorts stratified by covari-
ate integrity (complete/missing information) (Table S1). 
Calibration curves for probability of 2-and 5-year CSS 
showed excellent agreement between model predic-
tion and actual observation in both the training/valida-
tion and test cohorts (Fig. 3A-B). Decision curve analysis 
demonstrated that GBM model provided larger net ben-
efits to decide which ICC patients to refer to specialized 
oncological care compared with "treat all" or "treat none" 
strategy (Fig. 3C-D). We deployed an app (https://​machi​
nelea​rning​model.​shiny​apps.​io/​ICC_​App/) that allows 
real-time survival estimates using the prediction score 
(Fig. 2D).

Risk stratification
With X-tile software identifying optimal cut-off values 
for prediction scores (-3.65 and -2.45) (Fig. S2), patients 
were categorized into three groups with a highly differ-
ent probability of post-resection survival in the train-
ing/validation cohort: low risk (194 [48.4%]; 5-year 
CSS, 58.1%), intermediate risk (165 [41.1%]; 5-year CSS, 
10.3%), and high risk (42 [10.5%]; 5-year CSS, not appli-
cable) (P < 0.001). The three prognostic strata by using 
the GBM model were confirmed in the test cohort: low 
risk (345 [53.1%]; 5-year CSS, 54.1%), intermediate risk 
(251 [38.7%]; 5-year CSS, 18.5%), and high risk (53 [8.2%]; 
5-year CSS, 0.0%) (P < 0.001) (Fig. 4A-B; Table 3). Patient 
characteristics stratified by the GBM model are shown in 
Table S2. Remarkable differences were observed among 
three risk groups in all listed characteristics except for 
patient gender. We also noted that patients were split into 
distinct prognostic groups across the AJCC stages using 
the proposed GBM model (P < 0.001) (Fig. 4C-E).

http://www.r-project.org
https://machinelearningmodel.shinyapps.io/ICC_App/
https://machinelearningmodel.shinyapps.io/ICC_App/
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Table 1  Comparison of demographic and clinicopathological characteristics between the training/ validation and test cohorts

Continuous variables reported as median (interquartile range) and categorical variables reported as number (percentage)

Abbreviations: LNM lymph node metastasis, CSS cancer-specific survival
† P value calculated by log-rank test
a Numbers in parentheses are 95% confidence interval

Characteristics Training/validation
(n = 401)

Test
(n = 649)

P-value

Age, years 60.0 (51.0–66.0) 63.0 (55.0–70.0)  < 0.001

Gender  < 0.001

  Female 157 (39.2) 333 (51.3)

  Male 244 (60.8) 316 (48.1)

Tumor size, cm 5.5 (3.7–7.5) 5.5 (3.5–8.0) 0.605

Tumor number  < 0.001

  Single 303 (75.6) 402 (61.9)

  Multiple 98 (24.4) 140 (21.6)

  Unknown 0 (0.0) 107 (16.5)

Vascular invasion  < 0.001

  Negative 269 (67.1) 316 (48.7)

  Microvascular 49 (12.2) 158 (24.3)

  Macrovascular 83 (20.7) 55 (8.5)

  Unknown 0 (0.0) 120 (18.5)

Regional LNM 0.819

  Absent 323 (80.5) 519 (80.0)

  Present 78 (19.5) 130 (20.0)

Number of regional LNM 0.174

  0 323 (80.5) 519 (80.0)

  1–2 48 (12.0) 96 (14.8)

   ≥ 3 30 (7.5) 34 (5.2)

Histological grade  < 0.001

  Well to moderate 144 (35.9) 372 (57.3)

  Poorly to undifferentiated 257 (64.1) 194 (29.9)

  Unknown 0 (0.0) 83 (12.8)

Visceral peritoneum invasion 0.268

  No 344 (85.8) 572 (88.1)

  Yes 57 (14.2) 77 (11.9)

Direct invasion of adjacent organ 0.579

  No 363 (90.5) 594 (91.5)

  Yes 38 (9.5) 55 (8.5)

Fibrosis score  < 0.001

  None to moderate fibrosis 269 (67.1) 118 (18.2)

  Severe fibrosis or cirrhosis 132 (32.9) 31 (4.8)

  Unknown 0 (0.0) 500 (77.0)

Type of surgery  < 0.001

  Wedge or segmental resection 209 (52.1) 213 (32.8)

  Lobectomy 53 (13.2) 241 (37.1)

  Extended lobectomy 117 (29.2) 96 (14.8)

  Extrahepatic bile duct resection 22 (5.5) 99 (15.3)

Median CSS time, monthsa 29.6 (25.9–39.2) 39.0 (35.0–44.0) 0.011
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Discussion
Accurate prediction of survival in ICC is important for 
decision making and counseling of patients. By harvest-
ing data from over 1000 patients with surgically managed 
ICC, we trained, validated and tested a novel gradient-
boosting ML model that utilized readily available clinical 
data and provided accurate prognosis prediction (C-sta-
tistic ≥ 0.72). The GBM model outperformed both the 
AJCC staging system as well as the previously published 
MEGNA score. Importantly, this GBM model increased 
the number of low-risk/early-stage patients who could be 
identified by approximately 1.4-fold as compared to the 
widely adopted AJCC system.

Genomic biomarkers may provide prognostic infor-
mation; however, their applicability is limited in routine 
clinical care [18]. Notably, a simple system that utilizes 
readily available clinical data and provides accurate 
prognosis estimates remains the preferred reference for 
personalized management in clinical oncology. Clini-
cians already use simple models to discuss, for example, 
the benefit of adjuvant therapy with patients [19]. Prior 
efforts to develop parsimonious models to predict the 

Fig. 2  Overview of the gradient boosting machine (GBM) model. A Variables included in the model and their relative influence. B Illustrative 
example of the proposed GBM model, which builds the model by combining predictions from stumps of massive decision-tree-base-learners in a 
step-wise fashion. Prediction score is estimated by adding up the predictions (red number) attached to the terminal nodes of all 2000 decision trees 
where the patient traverses. C Performance of GBM model as compared with that of American Joint Committee on Cancer (AJCC) staging system 
and multifocality, extrahepatic extension, grade, nodal status, and age (MEGNA) prognostic score in the internal validation group. D Online model 
deployment based on the GBM prediction. LNM, lymph node metastasis

Table 2  Performance of proposed and existing prognostic tools 
for ICC

Abbreviations: ICC intrahepatic cholangiocarcinoma, CI confidence intervals, 
GBM gradient boosting machine, AJCC American Joint Committee on 
Cancer, MEGNA multifocality, extrahepatic extension, grade, nodal status, 
and age, FAHNJMU First Affiliated Hospital of Nanjing Medical University, 
SEER Surveillance, Epidemiology, and End Results
a Available at baseline (467/649) and compared with GBM model in 
corresponding sub-cohort

Prognostic tools C-statistic (95% CI) P-value

Training/validation cohort (n = 401)

  GBM model 0.751 (0.717–0.784) ref

  AJCC 8th edition 0.673 (0.637–0.708)  < 0.001

  MEGNA prognostic score 0.674 (0.638–0.710)  < 0.001

Test cohort (n = 649)

  GBM model 0.723 (0.697–0.749) ref

  AJCC 8th edition 0.636 (0.608–0.664)  < 0.001

  MEGNA prognostic scorea 0.617 (0.582–0.651)  < 0.001
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prognosis for patients with ICC have mostly been reliant 
on Cox regression modeling strategies [2, 6, 7]. The Cox 
model, also known as the proportional hazards model, 
assumes that the interactions between covariates are 
homogeneous and different covariates multiplicatively 
contribute to the hazard function but complex relation-
ships exist between factors related to ICC prognosis 
[20, 21]. Moreover, Cox regression analysis must be per-
formed in cases with complete information and improper 
management of data, such as excluding cases with miss-
ing data, introduces substantial bias, as noted across vari-
ous cancer types [22, 23]. In that setting, ML techniques 
have a significant role to play.

Recent recommendations have emphasized the 
explainability along with the robustness to incomplete 
data as the priority in ML research [24, 25]. Decision 
tree-based algorithms represent a large family of ML 
techniques. Current machine-based classification and 

regression trees (CART) have been applied to define 
prognostic groups for patients with resected ICC 
because of their simplicity and intuitive interpretation 
[20, 21]. Nevertheless, such trees suffer from intrinsic 
limitations in predictive performance. Gradient boost-
ing of regression trees enables highly competitive, 
robust, interpretable procedures to relax the assump-
tion of proportional hazards and allow for complicated 
relationships between covariates that improve the pre-
dictive accuracy [26]. GBM model can be disassem-
bled into massive decision-tree-base-learners (CART 
models) so that it is possible to decipher the intrinsical 
structure of our proposed model and understand how 
the machine makes predictions. Moreover, GBM algo-
rithm has a built-in functionality to handle missing 
values that permits utilizing data from, and assigning 
classification to, all observations in the cohort with-
out the need of imputation for missing data [9]. This 

Fig. 3  Calibration and clinical utility of the gradient boosting machine (GBM) model. Calibration curves of predicted compared with observed CSS 
probability at 2 and 5 years in the training/validation A and the test B cohort. Decision curve analysis comparing the model with other strategies for 
predicting 2-and 5-year CSS in the training/validation C and the test D cohort. The y-axis measures the net benefit at a given threshold probability, 
which is estimated by summing the benefits (true-positive results) and subtracting the harms (false-positive results), weighting the latter by a factor 
related to the relative harm of an undetected disease compared with the harm of unnecessary treatment. The gray line represents the treat-all 
strategy (assuming all die of this disease), and the black line represents the treat-none strategy (assuming none die of this disease). GBM-based 
model provided greater net benefits compared with other strategies across the majority of threshold probabilities. CSS, cancer-specific survival
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considerably broadens the datasets available and the 
scope for building prognostic models. Another limit 
to ML techniques is overfitting (low bias and high 
variance), defined as a superior performance in the 
training/validation cohort but inferior performance 

in an independent test dataset [27]. To avoid this 
issue, a nested cross-validation approach was applied 
for hyperparameter tuning in this study because it 
prevents information leaking between cases used 
for model training and validation [15]. Comparable 

Fig. 4  Kaplan–Meier curves demonstrating the differences in cancer-specific survival among low-, intermediate-, and high-risk patients. Survival 
disparities among different risk groups in the training/validation A cohort, the test B cohort as well as sub-cohorts stratified by American Joint 
Committee on Cancer (AJCC) stages C-E 

Table 3  Cancer-specific survival according to risk stratification

Abbreviations: CI confidence intervals, NA not applicable
* P value versus low-risk; †P value versus intermediate-risk

Risk group Median time, months
(95% CI)

2-year rate, %
(95% CI)

5-year rate, %
(95% CI)

Hazard ratio
(95% CI)

P-value

Training/validation cohort (n = 401)

  Low-risk (n = 194) 74.6 (58.3-NA) 81.6 (76.0–87.6) 58.1 (49.1–68.6) 1

  Intermediate-risk (n = 165) 19.0 (16.6–23.7) 39.9 (32.4–49.1) 10.3 (4.8–22.2) 3.901 (2.826–5.384)  < 0.001*

  High-risk (n = 42) 7.0 (4.4–9.9) NA NA 2.794 (1.606–4.863)  < 0.001†

Test cohort (n = 649)

  Low-risk (n = 345) 73.0 (60.0–89.0) 82.5 (78.6–86.7) 54.1 (48.4–60.4) 1

  Intermediate-risk (n = 251) 28.0 (24.0–33.0) 55.5 (49.6–62.1) 18.5 (13.3–25.8) 2.496 (1.980–3.146)  < 0.001*

  High-risk (n = 53) 11.0 (7.0–13.0) 7.8 (3.0–19.9) 0.0 (NA) 3.509 (2.149–5.728)  < 0.001†
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performance in the training/validation cohort, the test 
cohort as well as sub-cohorts stratified by covariate 
integrity further confirmed good reproducibility and 
reliability of our GBM model.

Although ML algorithms may improve prediction 
performance in the prognostic setting, it is important 
to demonstrate that improved accuracy can translate to 
better clinician and patient decision-making. We there-
fore provided an app (https://​machi​nelea​rning​model.​
shiny​apps.​io/​ICC_​App/) that allows for a GBM predic-
tion input and an immediate feedback of survival prob-
abilities at individualized time scale. Also, the GBM 
model was able to identify three risk strata for cancer-
specific death (ie, low-, intermediate-, and high-risk 
groups). Nearly half of ICC patients who suffered from 
extremely dismal prognosis following resection were 
identified by using the GBM model. Therefore, adjuvant 
treatments, such as capecitabine-based chemotherapy 
or immune-directed therapy, is desirable for intermedi-
ate-to-high risk patients. In turn, over half of patients 
with surgically resected ICC were categorized as low 
risk with satisfactory long-term survival and thus may 
receive no adjuvant therapy. On the other hand, the 
GBM model highlights that the number of regional 
LNM holds more prognostic information compared 
with the involvement of regional LNM, which is con-
sistent with previous publication [28].

Several limitations warrant attention when inter-
preting the results of this model. First, our model was 
developed, validated and tested using retrospective 
data; a prospective validation study should be con-
ducted to confirm our results prior to its routine use in 
clinical practice. Nonetheless, the top-ranked features 
in the proposed model, such as tumor size, number 
of regional LNM, vascular invasion and tumor num-
ber, are all well-established prognostic factors, lend-
ing validity to our GBM model [1]. Second, patient and 
tumor characteristics included in this study were lim-
ited because some potential prognostic factors, such 
as carcinoembryonic antigen, carbohydrate antigen 
19–9, surgical margin status and treatment of recur-
rent disease, were not available in SEER database. How-
ever, the seven covariates integrated into our model are 
readily accessible from health-care data, indicating its 
simplicity and feasibility; the proposed GBM model is 
still able to provide accurate prediction and risk strati-
fication even without additional prognostic informa-
tion. Finally, our GBM model promises to identify ICC 
patients at high risk for cancer-specific death after 
resection but does not provide individualized solution 
for how to manage these patients clinically to ultimately 
improve prognosis.

Conclusions
In conclusion, we developed and validated an interpret-
able ML model using readily available clinical data to 
predict the prognosis for patients with resected ICC. 
Our GBM model provides more-accurate determina-
tion of survival probabilities compared with previ-
ously proposed MEGNA score and widely adopted 
AJCC staging system. Such an easy-to-use tool may 
lead to better personalized treatments for patients with 
resected ICC in future clinical practice.
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